Nil ideals in rings with finite Krull dimension
نویسندگان
چکیده
منابع مشابه
On primitive ideals in polynomial rings over nil rings
Let R be a nil ring. We prove that primitive ideals in the polynomial ring R[x] in one indeterminate over R are of the form I [x] for some ideals I of R. All considered rings are associative but not necessarily have identities. Köthe’s conjecture states that a ring without nil ideals has no one-sided nil ideals. It is equivalent [4] to the assertion that polynomial rings over nil rings are Jaco...
متن کاملRings with Finite Gorenstein Global Dimension
We find new classes of non noetherian rings which have the same homological behavior that Gorenstein rings.
متن کاملOn Gröbner bases and Krull dimension of residue class rings of polynomial rings over integral domains
Given an ideal a in A[x1, . . . , xn] where A is a Noetherian integral domain, we propose an approach to compute the Krull dimension of A[x1, . . . , xn]/a, when the residue class ring is a free A-module. When A is a field, the Krull dimension of A[x1, . . . , xn]/a has several equivalent algorithmic definitions by which it can be computed. But this is not true in the case of arbitrary Noetheri...
متن کاملCharacterizations of Krull Rings with Zero Divisors
We show that a ring is a Krull ring if and only if every nonzero regular prime ideal contains a t-invertible prime ideal if and only if every proper regular principal ideal is quasi-equal to a product of prime ideals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1974
ISSN: 0021-8693
DOI: 10.1016/0021-8693(74)90112-4